GPU System Call

نویسندگان

  • J'an Vesel'y
  • Arkaprava Basu
  • Abhishek Bhattacharjee
  • Gabriel Loh
  • Mark Oskin
  • Steven K. Reinhardt
چکیده

GPUs are becoming first-class compute citizens and are being tasked to perform increasingly complex work. Modern GPUs increasingly support programmabilityenhancing features such as shared virtual memory and hardware cache coherence, enabling them to run a wider variety of programs. But a key aspect of general-purpose programming where GPUs are still found lacking is the ability to invoke system calls. We explore how to directly invoke generic system calls in GPU programs. We examine how system calls should be meshed with prevailing GPGPU programming models, where thousands of threads are organized in a hierarchy of execution groups: Should a system call be invoked at the individual GPU task, or at different execution group levels? What are reasonable ordering semantics for GPU system calls across these hierarchy of execution groups? To study these questions, we implemented GENESYS – a mechanism to allow GPU programs to invoke system calls in the Linux operating system. Numerous subtle changes to Linux were necessary, as the existing kernel assumes that only CPUs invoke system calls. We analyze the performance of GENESYS using micro-benchmarks and three applications that exercise the filesystem, networking, and memory allocation subsystems of the kernel. We conclude by analyzing the suitability of all of Linux’s system calls for the GPU.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Model of CPU/GPU Collaborative Computing in GPU Clusters

Remote procedure call (RPC) is a simple, transparent and useful paradigm for providing communication between two processes across a network. The compute unified device architecture (CUDA) programming toolkit and runtime enhance the programmability of the graphics processing unit (GPU) and make GPU more versatile in high performance computing. The current researches mainly focus on the accelerat...

متن کامل

Protecting Real-Time GPU Applications on Integrated CPU-GPU SoC Platforms

Integrated CPU-GPU architecture provides excellent acceleration capabilities for data parallel applications on embedded platforms while meeting the size, weight and power (SWaP) requirements. However, sharing of main memory between CPU applications and GPU kernels can severely affect the execution of GPU kernels and diminish the performance gain provided by GPU. For example, in the NVIDIA Jetso...

متن کامل

Towards global composition of performance-aware components for GPU-based systems

An important program optimization especially for heterogeneous parallel systems is performance-aware implementation selection which is (static or dynamic) selection between multiple implementation variants for the same computation, depending on the current execution context (such as currently available resources or performanceaffecting parameter values)1. Doing it for multiple component calls i...

متن کامل

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

Flexible Runtime Support for Efficient Skeleton Programming on Heterogeneous GPU-based Systems

SkePU is a skeleton programming framework for multicore CPU and multi-GPU systems. StarPU is a runtime system that provides dynamic scheduling and memory management support for heterogeneous, accelerator-based systems. We have implemented support for StarPU as a possible backend for SkePU while keeping the generic SkePU interface intact. The mapping of a SkePU skeleton call to one or more StarP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017